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ABSTRACT

We de�ne metrics to quantify the level of overall delay and propose an agent-based data-driven model with four factors, including aircraft
rotation, �ight connectivity, scheduling process, and disturbance, to build a simulator for reproducing the delay propagation in aviation net-
works. We then measure the impact on the propagation by the delay at each airport and analyze the relevance to its temporal characteristics.
When delay occurs, airline schedule planning may become infeasible, and rescheduling of �ights is usually required to maintain the function
of the system, so we then develop an improved genetic algorithm (GA) to reschedule �ights and to relax the root delay. Results indicate that
priority-based strategy rather than First-Come-First-Serve can achieveminimum overall delay when congestion occurs, and aircraft rotation is
the most important internal factor contributing to delay propagation. Furthermore, the reschedule generated by the improved GA can decrease
delay propagation more signi�cantly compared to the agent-based model.

© 2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5111995

Air transportation has become the main means of travel con-
necting di�erent countries and di�erent races. However, �ight
delays have become increasingly serious in recent years. In avia-
tion systems, aircraft delay propagates if the slack time between
consecutive �ights is insu�cient, and the propagation is further
aggravated along strong ties connecting airports with heavy traf-
�c. If the arrival of the former �ight gets delayed and cannot be
absorbed by the bu�er time at the airport, the departure of the sec-
ond �ight may be delayed; and if the departure delay of the next
�ight cannot be absorbed through increasing the in-air speed, its
arrival may also get delayed. This cascadelike e�ect enables the
propagation of �ight delays and may cause severe consequences.
We propose an agent-based data-driven model for reproducing
the delay propagation in aviation networks, and we investigate the
behavior of the model under di�erent factors. At the end of this
study, we discuss two rescheduling strategies to guide the design
of controlling strategies for e�ectively reducing �ight delay prop-
agation. This study is crucial for understanding delay propagation
in airport networks and considering the temporal interactions

among �ights from all companies, it provides potential strategies
for developing more robust schedules such that the overall delay
of �ights can be minimized.

I. INTRODUCTION

Air transportation has become the main means of travel con-
necting di�erent countries and di�erent races.1–5 Further, it has over-
taken rail transportation to become the more popular method used
by travelers, and it has made many global pursuits much more acces-
sible, such as resource allocation,6 the forecasting of epidemics,7 the
optimization of transportation systems,8 and disaster response.9

Air transportation systems have been traditionally expressed
as graphs with vertices and edges representing airports and �ights,
respectively. These graphs are called aviation networks or airport
networks and have been studied at di�erent spatial10–13 or tempo-
ral resolution.14–16 While the study of aviation networks has been
extended to help understand complex phenomena such as economic
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growth17 or the spreading pattern of globally transmitted diseases,18

many researchers also started focusing on transportation system itself
for complexity dynamics such as delay propagation.19–24

Flight delays are inevitable for many reasons, such as extreme
weather conditions, unplanned maintenance issues, or air tra�c
control complications. In recent years, �ight delays have become
increasingly common, particularly in China, which has the second
largest number of air transport passengers in the world after the
US. However, according to the 2017 Statistical Bulletin of Civil Avi-
ation Industry Development,25 only 71.25% of 2.129million �ights
are on time, and the direct economic impact caused by �ight delays
is about $50 billion. The situation may become more severe in the
next decade with the rapid development of aviation networks and
the large-scale growth of the number of future routes. When a delay
happens, the coupling relationship between �ights will lead to more
frequent occurrence of delay propagation with consecutive �ights. If
the arrival of the former �ight gets delayed and cannot be absorbed
by the bu�er time at the airport, the departure of the second �ight
may be delayed; and if the departure delay of the next �ight cannot
be absorbed through increasing the in-air speed, its arrival may also
get delayed. This cascadelike e�ect enables the propagation of �ight
delays and may cause severe consequences. To �gure out the mech-
anism underlying the propagating phenomenon, attempts have been
made with a variety of approaches, such as Bayesian network,26 sur-
vival model,24 and epidemic spreading model.18 These studies di�er
in the level of details included in theirmodels, but in general they suc-
ceed in modeling the propagation for a few major airports. In addi-
tion, an alternative taking a systemic or network-wide perspective is
proposed by Pablo Fleurquin.27

Furthermore, researchers have proposed di�erent approaches to
�nd improved strategies for recovering when disruptions occur, to
minimize the overall delay in the system and prevent propagation.
Abdelghany et al.28 develop a decision support tool to automate crew
recovery during irregular operations. Lettovskỳ et al.29 develop a real-
time recovery plan to restore a disrupted crew schedule. Yu and Qi30

have studied the recovery models used by United Airlines in the
context of disruption management. Stojković et al.31 focus on how
to modify an existing plan in order to recover from a set of minor
disruptions. The objective of these approaches is to minimize the
costs associated with extra resource utilization and passenger incon-
veniences. Lan et al.32 consider how changes in aircraft routes can be
used to reduce the potential for delays to propagate via connecting
�ights. The objective of their approach is to decrease the impact of
delay on passengers’ ability to make �ight connections. Cohn et al.33

decrease airline delay propagation by developing a �ight retiming
model which focuses on minimizing the propagation of root delays.
Akturk et al.34 undertake the �rst study in which the cruise speed is
explicitly included as a decision variable in an airline recovery opti-
mization model along with the environmental constraints and costs.
Theirmodel allows for an investigation of the trade-o� between �ight
delays and the recovery cost.

However, though most of the above work succeeded in mod-
eling and decreasing delay propagation in daily operations,35–40 and
most existing studies have found many factors which a�ect �ight
delays, it is not yet clear on how �ight delays spread; it is di�cult to
accurately describe the mechanisms of delay propagation in the avia-
tion network considering the airlines’ dependence and all the internal

and external factors in the system. To �ll in this gap of knowledge,
we try to create a model for reproducing delay propagation in avia-
tion networks by considering four factors, including aircraft rotation,
�ight connectivity, scheduling process, and disturbance,27 and then,
we use this model as a benchmark to evaluate the in�uence of fac-
tors and to quantify the possibility of improvements by optimized
rescheduling when delay happens. Unlike most previous studies, we
have access to the most synthetic dynamic Chinese aviation network,
with empirical data which includes all �ight companies and contains
the most up-to-date high spatial and temporal resolution. Moreover,
as themechanisms for the dynamics of aviation systems are extremely
complicated and are not possible to quantify with tens of thousands
of parameters, we build a black-box model, i.e., a data-driven agent-
based simulator, to reproduce the system. Finally, compared to the
current rescheduling strategy from real data, we �nd that it is pos-
sible to achieve much less overall delay with the new rescheduling
strategy obtained by our algorithm.

II. DATA SETS

The data were crawled from VariFlight,41 which provides the
actual and scheduled times of �ights of Chinese Aviation Networks
(CANs). The dataset covers all civil airlines in China and contains
33 995 scheduled and actual �ights for 10 days in 2016 (from Septem-
ber 7 to September 13 and fromDecember 3 toDecember 5) operated
by domestic carriers connecting 211 di�erent domestic airports. The
information for each �ight includes the actual and scheduled depar-
ture and arrival time, the origin and destination airport, historical
punctuality, etc. The information about the aircraft includes the air-
craft type, the age of aircraft, and the airline company. With these
information, we then are able to generate the �ight sequences of
aircrafts. It is worth noting that the data collection period covers
December 4, 2016, on which a heavy smog and fog occurred at the
Chengdu Shuangliu Airport (CTU), and serious �ight delays and
congestion were recorded. The runway was closed for nearly 10 h, 49
�ights were canceled, and over 20 000 passengers were left stranded
by delayed or canceled �ights.

III. MODEL FOR DELAY PROPAGATION IN AVIATION

NETWORKS

Agent-based models are a kind of microscale model which is
used to simulate the simultaneous operations and interactions of
multiple agents in an attempt to recreate and predict the appear-
ance of complex phenomena. The data-driven approach focuses on
building a system based on a large number of observed datasets. The
strength of this approach is that it depends on the empirical data
rather than on a set of rules or parameters hypothesized by the users.
In this section, we propose an agent-based data-driven model con-
sisting of four factors, including aircraft rotation, �ight connectivity,
scheduling process, and disturbance, to build a systematic model for
reproducing the delay propagation in aviation networks. As shown
in Fig. 1, �rst, the model is con�gured with initial delay (the delay in
the �rst mission of each aircraft), which is extracted from the empir-
ical data. Second, after initialization, the model considers the delay
caused by both aircraft rotation and �ight connectivity as well as the
disturbance which may occur for �ights waiting for departure at the
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FIG. 1. The agent-based data-driven model.

airport. Third, the model applies and compares two strategies for
scheduling aircraft takeo� sequences, on the premise of meeting the
airport’s takeo� and landing capacity.

A. Aircraft rotation

Throughout a day, each aircraft follows the connections given
in the schedule, the so-called aircraft rotations.27 To make the most
e�cient use of their aircraft, the airline companies typically sched-
ule several �ights for each aircraft. Consequently, one �ight may be
delayed if the preceding �ight cannot land on time, and this kind of
delay can cascade and propagate further delays. However, the prop-
agation of delays can be diminished gradually via two time-saving
processes: accelerating the �ight preparation work at airports and
increasing speed during the �y.

It is common knowledge that �ights can arrive early but cannot
depart early. The propagation of delay caused by aircraft rotation is

shown in Fig. 2, in which Sapt i = α × Oi and S
air

i = β × Fi represent
the saved time generated by the two previously mentioned processes:
faster �ight preparation (Sapt) and increased �ight speed (Sair). In
the above notation, α = (Oi − O∗

i )/Oi, in which Oi and O∗
i repre-

sent the scheduled and actual stopover time of �ight i at the airport,
respectively; and β = (Fi − F∗

i )/Fi, in which Fi and F∗
i represent the

scheduled and actual �ight time, respectively. Obviously, during the
two process of �ight preparation/stopover and �ying, when α and β

are negative, it means that there is no time saved by these two process,
the actual stopover time and �ight time have exceeded the scheduled
time; and when their values are positive, it means that the processes
are accelerated than planned. If its former �ight j is delayed forDj and
cannot recover via the bu�er time at the airport (Dj > Sapt i), �ight i
will depart late forDj − Sapt i. Then, if i can absorb the departure delay
along the way, it will arrive early for Sair i − (Dj − Sapt i); otherwise, it
will delay for Dj − Sapt i − Sair i. exceed

According to the Normal Statistical Methods for Civil Aviation
Flights, �ights more than a 15min late are considered delayed. In
addition, faster preparation time at airports is only applicable to air-
crafts carrying out multiple missions. We analyze the distribution of
faster �ight preparation work and increased �ight speed from the
empirical data (Fig. 3). α < 0 indicates that the �ight was delayed
at the airport [Fig. 3(a)], which may attributable to slow boarding by
the passengers, mechanical failure, etc. However, it is worth noting
that there are other common factors which may lead to delay, such
as airport congestion, regardless of the on-time status of the preced-
ing �ight. From Fig. 3(b), we can see that both delayed and on-time
�ights tend to speed up during the �y, on average, each �ight saves
about 25% traveling time by speeding up. Only a small proportion
(1.3%) of �ights are slower than scheduled, i.e., with β < 0.

B. Flight connectivity

Flight connectivity involves the transfer of passengers and crews
between �ights with di�erent aircrafts. Without loss of generaliz-
ability, in this study, we assume that transfer time of passengers and
crews of former �ights requires at least tmin = 1 h, and that the tem-
poral gap between the departure time of the subsequent �ight and
the landing time of the former �ight shall not exceed tmax = 3 h. In
addition, transfers occur only between airports without direct �ights.
The probability of connecting is set as the historical punctuality of

FIG. 2. The subprocess of aircraft rota-
tion.
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FIG. 3. Two time-saving processes: (a) accelerating the flight preparation work at
airports and (b) increasing speed during the fly in CAN during the data collection
period.

each �ight. A more complicated factor is that passengers on a sec-
ond �ight may be a combination of individuals transferring from
di�erent incoming �ights, and the actual departure time depends on
the boarding time of the last passenger to board. As illustrated in
Fig. 4, passengers and crews of �ight i come from �ights a, b, and
c, with scheduled stopover time Oa > Ob > Oc. When �ight a is on
time but �ights b and c are delayed, the �nal delay of �ight i equals
Db − α × Ob, while Db − α × Ob > Dc − α × Oc.

C. Scheduling process

1. Air traffic control

Airports have limited capacity for departing and landing �ights
in a given time period. In addition, a temporal gap between departure
�ights or arrival �ights must be guaranteed to ensure safety. Thus,
some �ights may be delayed when the number of �ights in the queue
surpasses the capacity of the airport during a given time period. The
takeo� capacity of an airport is the number of scheduled departure
�ights (SDF) taken by the airport during a takeo� time, and the land-
ing capacity refers to the number of scheduled arrival �ights (SAF)

of an airport during a landing time. If the number of actual depar-
ture �ights (ADF) or actual arrival �ights (AAF) is greater than the
capacity threshold, �ights in the airportwill need towait for takeo� or
landing. Airport dispatchersmust take into account the capacity con-
straints of the departing and arriving �ights in scheduling, and �ight
takeo� can only be arranged when both of them �t the threshold.
After investigating the departuring and landing frequency during
busy hours from the empirical data, we assume in the model that the
duration of takeo�s is about 10min for a single-runway airport and
5min for two runways.

There may be a large di�erence between scheduled depar-
ture/landing capacity and actual departure/landing capacity in the
case of large-scale delay. For example, onDecember 4, 2016, a serious
delay caused by heavy smog and fog occurred at Chengdu Shuan-
gliu Airport [Figs. 5(a) and 5(b)], which led to a large di�erence
between its scheduled capacity and the actual capacity for taking
o� and landing, while Beijing Capital Airport [Figs. 5(c) and 5(d)],
with a relatively small delay, had a scheduled landing and departure
capacity similar to the actual landing and departure capacity.

2. Scheduling

When delay occurs, the airport needs to reschedule the delayed
�ights, so as to minimize the impact on other on-schedule �ights,
as well as to reduce the e�ect of cascading consequences. While in
practice the rescheduling is a compromise of complex factors, in the
model we consider two strategies: First Come First Serve (FCFS) and
priority-based.

a. FCFS. FCFS operates on the premise of meeting the airport’s
departure and landing capacity; the �ight departure order is queued
according to the actual landing time of the �ight.

b. Priority-based.With the priority-based approach, �ights with
higher priority will depart earlier. Factors a�ecting the priority of
�ights include the economic value of aircrafts, the delayed time of
�ights, and the number of �ightswith the same aircraft.While it is not

FIG. 4. The subprocess of flight connec-
tivity.
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FIG. 5. The hourly AAF, SAF, ADF, and SDF at Chengdu Shuangliu Airport (CTU)
and Beijing Capital Airport (PEK) on December 4, 2016. (a) AAF and SAF at CTU
airport, (b) ADF and SDF at CTU airport, (c) AAF and SAF at PEK airport, (d)
ADF and SDF at PEK airport.

feasible to quantify all these factors, we adopt an approach developed
by Milan42 to measure priority with two calculations: static priority
(SP) for on-time �ights and dynamic priority (DP) for delayed �ights.

The static priority of a normal �ight depends on the intrin-
sic characteristics of the �ight and the number of passengers and is
calculated by43

(SPF)i = ni · (ci + θiλiNi) /si, (1)

where ci is the direct economic loss per unit of time of delayed �ight
i, θi is the direct economic loss per unit of time of passengers, λi is
the passenger occupancy rate, Ni is the number of seats, and si is the
scheduled service time for the �ight at the destination airport.

Flights with short scheduled service time have little bu�er time
for absorbing delay, thus being more vulnerable to cause cascade-
like propagation of delay. Consequently, the higher the passengers’
“value” is, or the shorter service time of the �ight at the destination
airport is, the higher priority the �ight has. Although this single stan-
dard can e�ectively reduce the economic losses, �ights are not treated
equally, especially for those with lower “value.” Further, static prior-
ity also fails to take into account the heterogeneity of the length of
each �ight delay.

Dynamic priorities of delayed �ights take into account the
intrinsic nature of the �ight and the �ight delays, including

(1) Flights’ characteristics: the economic loss per unit of time when
�ight delays occur on the ground or along the way, the number
of seats, and the scheduled transfer time of �ights as discussed
above.

(2) Passengers’ characteristics: the number of passengers, passen-
gers’ economic loss per unit of time when �ights delay, and the
proportion of transferring passengers and the time they require.

(3) Length of �ight delays: the delay occured on the ground and/or
during the �y.

Then, the dynamic priority of a �ight can be calculated as

(DFP)i = (hi1 + hi2)/si, (2)

hi1 = ni · (ci + θiλiNi) · wi, (3)

hi2 =
(

θiλiNiqi
)

· wi, (4)

where hi1 is the economic loss caused when the �ight delays on the
ground at the departure airport, hi2 is the economic loss of passengers
who need to transfer, ni is the number of �ights carried out by the
same aircraft of �ight i, wi is the delay time, and qi is the ratio of
transferring passengers. In this study, we assume that passengers will
not choose to transfer between airports which have direct �ights.

In the following, we assume that all �ights are full, that is,
λi = 1; the passenger transfer rate qi is proportional to the histori-
cal on-time rate of subsequent �ights pi+1, that is, qi ∝ pi+1; and the
direct economic loss per unit of time ci of delayed �ights i is propor-
tional to the number of seats, that is, ci ∝ Ni and αi = 1. Thus, we
can rewrite Eqs. (1) and (2) as

(SPF)i ∝ 2niNi/si, (5)

(DFP)i ∝ (2n + pi+1) · Niwi/si. (6)

In addition, we should take other factors into consideration,
such as the boundary conditions, where there should be no delayed
�ights when all root �ights are on-time. Further, the �ight schedule
is the result of the coordination of airlines and airports, and thus, the
above priorities may not exactly match the order of �ight schedules,
so �ights within a takeo� resource need to be classi�ed and scheduled
as the following:

(1) Flights are scheduled according to �ight schedules when there
exist only on-time �ights in a unit of time.

(2) The priority of �ight will be scheduled by the dynamic priority
method when there exist only delayed �ights in a unit of time,
and the rest will delay for a unit of time and compete with �ights
within the subsequent unit of time.

(3) If there exist both on-time and delayed �ights in a unit of time,
the priority of delayed �ights will be scheduled based on the
dynamic priority method, while the priority of on-time �ights
will be scheduled according to the static priority method.

D. Disturbance

We set the delays caused by other factors in addition to the
aforementioned as the disturbance of �ights and assume that distur-
bance occurs at airports (i.e., on the ground). Taking into account the
impact of number of �ights at an airport on random delays for a to
b minutes, we mimic the disturbance using a uniform distribution
(di/dmax) · U (a, b), where di and dmax are the degree (the number
of connections to other airports) and maximum degree of depar-
ture airport of �ight i. Considering that the e�ect of disturbance only
accounts for a small part in the model (random noise), we set a = 0,
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b = 60. All of these parameters are set according to practice in the
Chinese aviation system as well as to our simulation tests, and they
will not a�ect the main conclusion of this study.

IV. RESULTS AND DISCUSSION

A. The effect of each factor

In order to analyze the behavior of the model under di�erent
days and di�erent factors, we undertake experiments on a day with
serious delays (December 4, 2016) and on a day withmoderate delays
(September 8, 2016).We then run the agent-based data-drivenmodel
not only to evaluate the e�ect of four individual factors on delay prop-
agation separately but also to analyze the synthesized models with
combinations of di�erent factors.

We use the ratio of delayed �ights rd and the average time of
delay davg to quantify the level of systemic delay. We obtain 48 pieces
of networks with a sliding time window of T = 30min for one day.
We then calculate rd and davg in each time window and use this
sequence as the output of the model. To illustrate the distinction
between initial delays and actual delays on CAN under di�erent fac-
tors, we calculate the Euclidean distance as the similarity between a
sequence of actual delays and a sequence of delays produced by these
models,

Er =
∑

i∈Sr1

(Sr1(i) − Sr2(i)),

Ed =
∑

i∈Sd1

(Sd1(i) − Sd2(i)),
(7)

where Er and Ed denote the di�erence between the two sequences
in terms of the proportion of delayed �ights and the average delay
time, respectively; Sr1(i), S

r
2(i), and Sd1(i), S

d
2(i) are the simulated

and actual sequences in terms of the proportion of delayed �ights
and the average delay time, respectively. Under the expectation that
strategies generating results closer to reality are more likely to be the
mechanisms driving the evolution of CAN, we use a two-dimension
comparison to rule out potential mechanisms for further simulation
(Fig. 6).

As shown in Fig. 6, the model considering both disturbance and
priority (PD model) can reproduce the delay propagation on days
with moderate (September 8) and serious (December 4) delay very
well, while the model considering FCFS and disturbance (FCFSD
model) performs better on dayswith serious delay. Under normal cir-
cumstances when there exist fewer �ights with serious delay, delays
of a large number of �ights may be absorbed at airports or during
the �y, making the e�ect of aircraft rotation being nonsigni�cant or
even less than the e�ect of disturbance. In addition, aircraft rotation is
the most signi�cant factor in delay propagation on days with serious
delay [Fig. 6(a)], while the priority of �ights plays an important role
on days with moderate delay [Fig. 6(b)]. Moreover, for delay spread-
ing occuring mainly through aircraft rotation, the FCFSD model
su�ciently explains the delay propagation, and the PD model may
overestimate the propagation on dayswith serious delay. Similarly, on
days with moderate delay, the PDmodel performs well at calculating
the delay propagation, and the FCFSD model, mainly in�uenced by
aircraft rotation. Disturbance of �ights may increase rd and davg no
matter whether it functions in conjunction with the priority-based

FIG. 6. The effects of four factors on different initial delay systems and the per-
formance of models in CAN under different days (a) on December 4, 2016 and (b)
on September 8, 2016. The synthesized models include the following combina-
tions of factors: FCFS with disturbance, FCFS without disturbance, priority-based
with disturbance, and priority-based without disturbance. The positive or negative
values of numbers imply the overestimation and underestimation of actual delay,
respectively.

model or the FCFS model on days with serious delay. Interestingly,
as shown in Fig. 6(b), under normal circumstances, random dis-
turbance under the FCFS mechanism will undoubtedly increase rd
while decrease davg . Random disturbance may weaken the e�ect of
the FCFS mechanism on days with moderate delay.

The distribution of delay time of each �ight is the best charac-
teristic of delay in CAN. As shown in Fig. 7, a comparison of two days
re�ects that the delay on December 4 [Figs. 7(a) and 7(b)] exhibited
a more pronounced fat-tailed distribution than that on September 8

FIG. 7. Comparison of distribution of departure and landing delay time between
the simulation and empirical data. The comparison of (a) arrival delay on Decem-
ber 4, (b) departure delay on December 4, (c) arrival-delay on September 8, and
(d) departure delay on September 8.
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FIG. 8. Comparison of rd and davg between the simulation and empirical data. The
comparison of (a) rd on December 4, (b) davg on December 4, (c) rd on September
8, and (d) davg on September 8.

[Figs. 7(c) and 7(d)] on both takeo� and landing, indicating that
more �ights were delayed on December 4. In addition, the priority-
based model has a better �t for the departure delay on December 4
than that on September 8. Themain reasonwas that Chengdu Shuan-
gliu Airport was closed on the morning of December 4, causing a
long delay in the initial �ights, and this dominating e�ect makes the
impact of other factors become insigni�cant.

Figure 8 shows the di�erence between the simulation data and
the empirical data for both rd and davg , representing the validity of
the model on the operation of aviation networks. We can see that
the model �ts the data well on both September 8 and December 4.
Apart from this, while there is a constant gap (10% to 15%) between
simulation and reality on September 8 [Figs. 8(c) and 8(d)], this gap
is not obvious on December 4, which is an indication of the delay
caused by other factors.

B. Cascading effect of delay at airport

In order to determine the impact of initial delay (the number
of �ights that have been delayed at an airport at the beginning of a
time period) on the propagation intensity in di�erent time periods,
we divide a day into four parts and set a 2-hour delay for all �ights at
each airport in each period, so as to simulate the large-scale e�ects of

extreme weather, terror threats, etc. Then, we de�ne Dx =
∑fx

i=1 dxi
as a variable quantifying the cascading e�ect of delay at an airport,
where Di represents the total delay time caused by the failure of air-
port x, dxi indicates the delay time of the �ight i at airport x, and fx
indicates the number of �ights at airport x.

As shown in Fig. 9, almost all �ights are scheduled after
06:00am. Large airports such as Beijing Capital Airport, Guangzhou

FIG. 9. Spatial and temporal distributions of airport delay in CAN during four time
periods. (a) 0:00–6:00, (b) 6:00–12:00, (c) 12:00–18:00, and (d) 18:00–24:00. The
color of each circle is proportional to the initial delay of the airport, and the circle
size represents the total delay that has propagated at the end of all time periods.

Baiyun Airport, Kunming Changshui Airport, and Chengdu Shuan-
gliu Airport had a large number of initial delayed �ights in all three
time periods, and all led to large total delay at the end of the day.
This is because large airports also accommodate more �ights, and
the delay of these �ights cannot be absorbed very well, which leads to
the delay in subsequent �ights andmay trigger large systematic delay.
In addition, there are a large number of shallow-colored nodes with
large size in all three segments, indicating airports with small initial
delays resulted in signi�cant systemic delay, including Hohhot Baita
International Airport, Yinchuan Hedong International Airport, and
Tianjin Binhai International Airport. Overall, the e�ect of airport on
�ight delays is strongly dependent on the number of �ights operat-
ing during that period, since a large number of delayed �ights will
increase the queuing time of other �ights and make the incoming
and outgoing �ow of the airport exceed the planned thresholds.

We then de�ne four metrics of temporal characteristics of air-
ports as the following to investigate the relationship between overall
delay (intensity of cascading e�ect) and the temporal characteristics
of airports: (1)Tdx

out is the set of nodes that can be reached by tempo-
ral paths fromnode x, which is similar to out-degree in an aggregated
network. (2) Tdx

in is the source set of x that can reach through tem-
poral paths, which is similar to in-degree in a network. (3) Cx

T is the
temporal closeness centrality of node x as the measurement of the
speed at which nodes in the temporal network can reach other nodes
and is de�ned as

Cx
T =

1

N − 1

∑

y

(1 − τxy), (8)

where τxy represents the average temporal distance between node x
and node y, and N is the number of nodes. (4) Bx

T is the temporal
betweenness of x as the metrics of the importance of node x on the
temporal shortest paths.

In Fig. 10, we have presented the relationship between the
overall delay and the temporal characteristics of airports. As the
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FIG. 10. The relationship between the overall delay and four temporal charac-

teristics of airports (a) Cx
T , (b) Bx

T , (c) Tdx
out , and (d) Tdx

in when all flights
are delayed in the corresponding time period. P1, P2, and P3 represent the time
periods 6:00–12:00, 12:00–18:00, and 18:00–24:00, respectively; the insets are
redrawings for 18:00–24:00.

temporal network characteristics have rarely been examined for their
impact on �ight delay, our motivation was to �nd potential un-
discovered temporal network e�ect in scenarios of airport failure,
e.g., extreme weather, etc. We can tell from the �gure that the delay
intensity of airports shows weak correlation with Bx

T , Tdx
out , and

Tdx
in [Figs. 10(b)–10(d)], indicating that the sharing resources (pas-

sengers, crew, etc.) from the former �ight and the sharing of air-
craft between di�erent missions are all positively correlated with the
spread intensity. The overall delay shows amore obvious exponential
relationship with Cx

T [Fig. 10(a)], indicating that the delay for air-
ports with higher temporal closeness centrality has a faster di�usion
rate.

V. DELAY CONTROL

The delay propagation model then can be used to simulate the
aviation system and to guide the design of controlling strategies for
e�ectively reducing �ight delay propagation. In the following, we
discuss two controlling strategies: (1) A greedy strategy based on
the delay spreading model and (2) an optimal strategy based on an
improved genetic algorithm.

A. Greedy strategy based on delay spreading model

When prioritizing �ights, we assume that the status of other
�ights in the network remains unchanged and that all �ights in each
unit of time delay for the same length of time (the takeo� takes about
10min for a single-runway airport and 5min for two-runway air-
ports). Then, we calculate the total delayed time that the �ight may
cause and used it as a measure of priority for �ight scheduling. In

FIG. 11. Comparison of the best-fit model and the model with greedy strategy on
(a) rd , (b) davg, and the model with strategy based on improved genetic algorithm
on (c) rd , (d) davg.

order to eliminate the simulation error of the model itself on the
actual operation data of the air tra�c system and simultaneously to
test the optimization e�ect of the greedy strategy, we compare the
scheduling data generated by the control strategy of the delay cascade
model with the simulation data generated by the scheduling pro-
cess of the model with the same initial delay. Figures 11(a) and 11(b)
show the control e�ect of initial delays on all aircraft on December
4, and the degree of optimization of the greedy strategy is measured
by the distance between the scheduling data and the simulation data
sequence. We can see that, with the delay spreading model-based
greedy strategy, both rd and davg are weakly optimized at the expense
of huge computing resource consumption. On average, the ratio of
delayed �ights is reduced by only 1.09% in each 30min.

B. Strategy based on improved genetic algorithm

(GA)

In this section, we develop an improved genetic algorithm that
takes the objective function and the constraints as inputs and gen-
erates an optimized scheduling solution. Delayed �ights bring sub-
stantial losses to airlines, airport operators, and passengers, most of
which are unquanti�able. To this end, the aim of �ight delay control
is to consider rd and davg . The objective function is

min

K
∑

i

Di, (9)

where K is the number of �ights and Di denotes the delayed time
of �ight i. According to the �ow constraint, the actual takeo� and
landing tra�c inside the airport must be less than a threshold of the

Chaos 29, 081101 (2019); doi: 10.1063/1.5111995 29, 081101-8

© Author(s) 2019

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

planned capacity for the airport,

SAFx(t) > (1 + γ )AAFx(t),

SDFx(t) > (1 + γ )ADFx(t),
(10)

in which SAFx, AAFx, SDFx, and ADFx represent the number of
scheduled arrival �ights, actual arrival �ights, scheduled departure
�ights, and actual departure �ights at airport x, respectively, and γ

is the proportion of �ow threshold and the number of scheduled
�ights. Former �ights of consecutive �ights (multiple �ights operated
on the same aircraft) must arrive prior to the departure of subsequent
scheduled �ights, namely,

ALik < ADik+1
(ik, ik+1 ∈ Si), (11)

where Si denotes the sequence of �ights operated by the �ight i, ALik
is the actual arrival time of preceding �ight ik, andADik+1

is the actual
departure time of the next �ight ik+1. In addition, the transfer of crew
and passengers between di�erent �ights also needs to meet a certain
time interval. We assume that the transfer of passengers only occurs
when there is no direct �ight between the two airports and that the
temporal gap between the departure time of the subsequent �ight and
the landing time of the former �ight is more than 1 h and less than
3 h, that is,

180 ≥ PDn − PLi ≥ 60 (Ain 6= 1), (12)

where Ain is the adjacent matrix of the aviation network, PDn is the
planned departure time of the next transfer �ights, and PLi is the
planned landing time of preceding �ights. Finally, the �ight itself has
constraints

ADi > PDi,

Di = ADi − PDi.
(13)

In the algorithm, we set the delay time for each �ight as a vari-
able, all �ight delays as a gene sequence, and the planned �ight data
and the initial delay for each aircraft as the set of inputs. We then
calculate the earliest departure time and the latest departure time of
each �ight by the role of aircraft rotation so as to determine the range
of each variable and reduce the search space of the set of solutions.

Because of the large scale and the large number of variables
within the aviation system, we improve the GA via the following
aspects to solve the optimization problemof large-scale scheduling:

(1) First, due to the large solution space and strong constraints, the
number of feasible solutions in the process of population evolu-
tion is limited. To solve this problem,we need to repair the unfea-
sible solutions and convert them into feasible solutions to speed
up the convergence. The straightforward operation is to post-
pone the departure time of �ights, which is subjected to takeo�
and landing �ow control for the most recent time period.

(2) Second, in order to make the algorithm converge faster to satis-
factory solution, we adopt the intergenerational reserved Elitism
Genetic Algorithm. This approach selects the best individual
from parents to ensure that individual �tness will not reduce.

(3) Finally, in order to avoid the impact of uniform crossover and
mutation probability on the population evolution of individuals
with di�erent �tness, the adaptive crossover and mutation prob-
ability is used to speed up the search of satisfactory solutions.

By comparing the di�erence between the scheduling data and the
simulation data, we show the performance of the improved genetic
algorithm in reducing the extent of delay spreading, including aver-
age delayed time of �ights and the number of delayed �ights, in
Figs. 11(c) and 11(d). We can see that although the improved GA
strategy has a weak in�uence on reducing the total delayed time of
�ights (about 210.7min in this period), it can reduce the average ratio
of delayed �ights to a large extent, by about 9.67% for each 30min.

VI. CONCLUSION

In this study, we �rst propose an agent-based data-drivenmodel
focusing on four factors, including aircraft rotation, �ight connec-
tivity, scheduling process, and disturbance, to create a simulator for
reproducing the delay propagation in aviation networks.We then run
the simulator not only to evaluate the e�ect of the four individual
factors on delay propagation separately but also to analyze the synthe-
sized model with combinations of di�erent factors. Apart from this,
we analyze the impact of initial delay on propagation intensity in dif-
ferent time periods and investigate the relationship between overall
delay and temporal characteristics of airports. Finally, we discuss two
rescheduling strategies to guide the design of controlling strategies
for e�ectively reducing �ight delay propagation.

Results show that the PD model can reproduce the delay prop-
agation on days with moderate and serious delay very well, while the
FCFSD model performs better on days with serious delay. When we
investigate the impact of initial delay on propagation intensity in dif-
ferent time periods, we �nd that the e�ect of airport on �ight delays
is strongly dependent on the number of �ights; in addition, the prop-
agation intensity shows a weak positive correlation with Tdx

out , Tdx
in,

and Bx
T , while the overall delay shows a more obvious exponential

relationship with Cx
T . When delay occurs, the planned �ight sched-

ule may become unfeasible, and we discuss two controlling strategies
for reducing �ight delay propagation: a greedy strategy based on the
delay spread model and a strategy based on an improved genetic
algorithm. We see that, although the improved GA strategy has a lit-
tle e�ect on reducing the total delayed time of �ights, it can reduce
the average ratio of delayed �ights to a large extent.

With a special focus on the temporal pattern and a substantial
e�ort in building a systematic model incorporating interactions of all
�ights and airports, we believe that this study is crucial for the under-
standing of delay propagation in airport networks, and it provides
optimized rescheduling strategies for minimizing delay. In this work,
we have considered as many factors as possible for delay propagation
and delay absorbing, and we have taken di�erent scheduling mech-
anisms into account in scenarios of airport congestion, providing an
important supplement to existing models.
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